skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Weixin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Defects may display high reactivity because the specific arrangement of atoms differs from crystalline surfaces. We demonstrate that high-temperature steam pretreatment of palladium catalysts provides a 12-fold increase in the mass-specific reaction rate for carbon-hydrogen (C–H) activation in methane oxidation compared with conventional pretreatments. Through a combination of experimental and theoretical methods, we demonstrate that an increase in the grain boundary density through crystal twinning is achieved during the steam pretreatment and oxidation and is responsible for the increased reactivity. The grain boundaries are highly stable during reaction and show specific rates at least two orders of magnitude higher than other sites on the palladium on alumina (Pd/Al 2 O 3 ) catalysts. Theoretical calculations show that strain introduced by the defective structure can enhance C–H bond activation. Introduction of grain boundaries through laser ablation led to further rate increases. 
    more » « less